CONTENTS | | | | Page | |------|------------|---|------------------| | Fore | eword | | vii | | Pref | ace | | viii | | 1. | Intro | oduction | 1 | | | 4.4 | Dunasahla | | | | 1.1
1.2 | Preamble Development of Power Systems in India | 1 | | | 1.3 | Environmental and Ecological Awakening | 1 | | | 1.4 | Privatisation Wave - Impact on Transmission Systems in India | 2 | | | 1.5 | Philosophies in Design of Transmission Lines | 2
2
2
3 | | | 1.6 | New Concepts in Transmission Line Design | 3 | | | 1.7 | Resume of Topics Covered in the Manual | 3 | | 2. | Tow | ver Types and Shapes | 15 | | | 2.1 | Scope | 15 | | | 2.2 | Types of Towers | 15 | | | | 2.2.2 Self-Supporting Towers | 15 | | | | 2.2.3 Conventional Guyed Towers | 15 | | | | 2.2.4 Chainette Guyed Towers | 21 | | | 2.3 | Tower Shapes | 21 | | | 2.4 | Tower Designation | 21 | | | | 2.4.2 Suspension Towers | 21 | | | | 2.4.3 Tension Towers | 21 | | | | 2.4.4 Transposition Towers2.4.5 Special Towers | 22
22 | | _ | _ | | | | 3. | IOW | er Geometry | 23 | | | 3.1 | Scope | 23 | | | 3.2 | Tower Anatomy | 23 | | | 3.3 | Bracing System | 25 | | | 3.4 | Tower Extensions | 27 | | | 3.5 | Tower Outline | 28 | | | 3.6 | Tower Height | 28 | | | 3.7
3.8 | Tower Width | 45
48 | | | 3.9 | Cross-arm Spread Typical Lengths of Insulator Strings on | 40 | | | 0.9 | Transmission Lines in India | 50 | | 4. | Elec | Electrical Clearances | | | | 4.1 | Introduction | 60 | | | 4.2 | Minimum Ground Clearance | 60 | | | 4.3 | Minimum Clearance above Rivers/Lakes | 60 | | | 4.4 | Environmental Criteria for 800 kV Line | 61 | | | 4.5 | Air Clearances - General Consideration | 61 | | | 4.6 | Clearances and Swing Angles on Transmission Lines in India | 61 | | | 47 | Conductor Metal Air Clearances | 62 | | 4.8 | | 63 | |------------|--|------------| | 4.9 | | 64 | | | O Clearance between Conductor & Groundwire | 65 | | | 1 Effect of Span Length on Clearances | 66 | | | 2 Clearances at Power Line Crossings
3 Recommendation | 66
67 | | 4.1 | 5 Recommendation | 67 | | AN | NEXURES | | | | nexure I - Spacing between Conductors | 70 | | Anr | nexure II - Swing Angle for 800 kV Anpara - Unnao Line for Insulator | 74 | | A D | Strings and Jumper PENDIX - Investigation Studies on Clearances and Swing Angles for | 71 | | AFI | PENDIX - Investigation Studies on Clearances and Swing Angles for
Indian Power System | 75 | | | mulan rower dystem | 70 | | 5. Des | sign Parameters | 78 | | 5.0 | Abstract | 78 | | 5.1 | Transmission Voltage | 78 | | 5.2 | | 78 | | 5.3 | | 79
87 | | 5.4
5.5 | Environmental and Ecological Consideration Conductor | 88 | | 5.6 | Earth Wire | 89 | | 5.7 | | 90 | | 5.8 | Span | 93 | | 6. Loa | ndings | 95 | | 6.1 | Introduction | 95 | | 6.2 | Requirements of Loads on Transmission Lines | 95 | | 6.3 | Nature of Loads | 96 | | 6.4 | Loading Criteria | 96 | | 6.5 | Transverse Loads (TR) - Reliability Condition | 06 | | 6.6 | (Normal Condition) Transverse Loads (TS) - Security Condition | 96
99 | | 6.7 | Transverse Loads (TS) - Security Condition Transverse Load (TM) during Construction | 33 | | 0.7 | and Maintenance - Safety Condition | 100 | | 6.8 | Vertical Loads (VR) - Reliability Condition | 100 | | 6.9 | Vertical Loads (VS) Security Condition | 101 | | 6.10 | Vertical Loads during Construction and Maintenance (VM) - Safety Condition | 101 | | 6.11 | • | 101 | | | 2 Longitudinal Loads (LS) - Security Condition | 102 | | | B Longitudinal Loads during Construction and Maintenance (LM) - Safety Condition | 102 | | | Loading Combinations under Reliability, Security and Safety Conditions | 103
103 | | | 5 Anti-cascading Checks
6 Brokenwire Condition | 103 | | | Broken Limb Condition for 'V' Insulator String | 104 | | 7. Des | ign of Tower Members | 105 | | 7.1 | General | 105 | | | 7.1.1 Technical Parameters | 105 | | 7.2 | Stress-Analysis | 105 | | | . x | | | | | | | | | 7.2.2
7.2.3
7.2.4 | List of Assumptions Graphical Diagram Method Analytical Method Computer-Aided Analysis 7.2.4.1 Plane - Truss Method or, 2-Dimensional Analysis 7.2.4.2 Space - Truss Method, or 3-Dimensional Analysis | 105
106
106
106
106 | |----|------|-------------------------|--|---------------------------------| | | | | Comparison of Various Methods of Stress Analysis Combination of Forces to determine Maximum Stress in each member | 107
107 | | | 7.3 | | per Selection | 107 | | | 7.4 | | tion of Material | 107 | | | , | | Use of hot rolled angle steel sections | 108 | | | | | Minimum Flange Width | 108 | | | | | Minimum Thickness of Members | 108 | | | | 7.4.4 | Grades of Steel | 108 | | | 7.5 | Slend | erness Ratio Limitations (KL/R) | 108 | | | 7.6 | Comp | utation of L/R for Different Bracing Systems | 108 | | | 7.7 | | ssible Stresses in Tower Members | 109 | | | | | Curve-1 to Curve-6 | 109 | | | | | Reduction due to b/t Ratio | 109 | | | 7.8 | | tion of Members | 109 | | | | | Selection of Members in Compression | 109 | | | | | Selection of Members in Tension | 109 | | | 7.9 | | Redundant Members and Nuts | 110 | | | | | and Nuis | 110 | | | Ann | exures | | | | | | 1 | Conductor Details | 111 | | | | }
 | Earthwire | 112 | | | | III
IV | Design Loads Crapping Diagram Mathed | 113 | | | | V | Graphical Diagram Method Analytical Method | 115
117 | | | | ۷ | Computer Aided Analysis | 125 | | | | VII | Input for 3D Analysis | 128 | | | | VIII | Output Giving Summary of Critical Stresses | 132 | | | | IX | Chemical Composition and Mechanical Properties of Mild Steel | 136 | | | | X | Chemical Composition and Mechanical Properties of High Tensile Steel | 137 | | | | ΧI | Section List Equal Section Commonly Used for Towers & As Per IS:808 | | | | | XII | (Part - V) 1989 | 138 | | | | XIII | L/R Consideration for Bracing System in a Transmission Tower Permissible Axial Stress in Compression | 140
142 | | | | XIV | Reference Table for Maximum Permissible Length of Redundant Members | 147 | | | | XV | Dimensions for Hexagon Bolts for Steel Structures | 148 | | в. | Test | ing of | Towers | 151 | | | 8.1 | Introdu | uction | 151 | | | 8.2 | Testin | g Requirements | 151 | | | 8.3 | Descri | ption of a Tower Testing Station | 151 | | | 8.4 | Calibra | ation | 151 | | | 8.5 | Assen | nbly of Prototype Tower | 152 | | | 8.6 | | g Arrangements and Location of the Loadcells | 152 | | | 8.7 | | Procedure | 152 | | | 8.8 | | g of Prototype Tower | 152 | | | 8.9 | Specia | al Requirements | 153 | | | | | | | | 8.11 | Acceptance of Test Results Material Testing | 154
154 | |------------|--|------------| | 8.12 | Presentation of Test Results | 154 | | Mate | erial, Fabrication, Galvanising, Inspection and Storage | 158 | | 9.1 | Scope | 158 | | 9.2 | Material Quality Control | 158 | | 9.3 | Specific Requirements of Fabrication | 158 | | 9.4 | Operations in Fabrication | 159 | | 9.5
9.6 | Tolerances Shop Eraction/Prote type Tower Assembly | 161
162 | | 9.0 | Shop Erection/Proto-type Tower Assembly Galvanising | 162 | | 9.8 | Inspection | 162 | | 9.9 | Packing and Storage | 162 | | | | | | Anne | Chemical Composition and Mechanical Properties of Mild Steel | 163 | | | II Chemical Composition and Mechanical Properties of High Tensile Steel | 164 | | | (a) Properties of Equal Angle Sections as per IS: 808 (Part V) - 1989 | 165 | | | (b) Properties of Unequal Angle Sections as per IS: 808 (Part V) - 1989 | 167 | | | (c) Properties of Channel Sections | 167 | | | IV Unit Weight of Plates | 168 | | | V Dimensions of Hexagon Bolts for Steel Structures | 169 | | | VI Ultimate Strength of Bolts | 170 | | | VII Properties of Anchor Bolts. Metric Screw Threads as per IS: 4218 | 4.7.4 | | | (Part-3)-1976 with ISO | 171 | | | endices | 470 | | Appe | endix I - Quality Assurance Plan | 172 | | | I. Introduction | 172 | | | II. Quality Objective | 172
172 | | | III. Quality Policy IV. Organisation of Quality Control Department | 172 | | | V. Quality Planning | 172 | | | VI. Design and Drawings | 173 | | | VII. Company Standards | 173 | | | VIII. Control on Inspection-Equipments/Tools/Gauges | 173 | | | IX. Material Management | 174 | | | X. Incoming Material Inspection | 174 | | | XI. Pre-production | 176 | | | XII. In-Process Inspection | 176 | | | XIII. Inspection and Testing of Finished (Galvanised) Material | 179 | | | XIV. Storage, Packaging and Handling | 181 | | Enclo | sures - A Sampling Plan for Incoming Material | 181 | | | a. Sections, Accessories and Bought out Items | 181 | | | b. , Sampling Plan for Physical Properties of Bolts, Nuts and Spring Washers | 182 | | | c. Sampling Plan for Galvanising Test for Threaded Fasteners | 182 | | | d. Formats for Inspection Report for Steel Stacking/Preliminary-(QCD-I) | 183 | | | e. Format for Report on Bend Test | 186
187 | | | f. Format for Report on Testing of Physical Properties G. Format for Inspection Report for Bolts/Nuts-(OCD-2) | 188 | | | g. Format for Inspection Report for Bolts/Nuts-(QCD-2) | 190 | | | h. Format for Test Report on Physical Properties of Bolts | 190 | 9. ## Typical Illustrations Tower Foundation Design Calculation | | | 269 | |-------|--|---| | | | 283 | | | | 285 | | | | 287 | | | | 289 | | | | 29 | | | | 293 | | | | 295 | | | | 297 | | 1 | Illustration - X | 299 | | Const | ruction of Transmission Lines | 30 | | 11.1 | Survey | 30 | | 11.2 | • | 30 | | 11.3 | Environmental Consideration | 306 | | 11.4 | Statutory Regulation for Crossing of Roads, Power Lines, | | | | Telecommunication Lines, Railway Tracks, etc. | 307 | | 11.5 | Surveying Methods | 307 | | 11.6 | Foundations | 316 | | 11.7 | Erection of Super Structure and Fixing of Tower Accessories | 327 | | 11.8 | Earthing | 330 | | 11.9 | Stringing of Conductors | 330 | | 11.10 | Hot-Line Stringing of E.H.V. Lines | 339 | | 11.11 | Protection of Tower Footings | 342 | | 11.12 | Testing and Commissioning | 342 | | 11.13 | References | 342 | | Annex | ures | 344 | | | Const 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 11.10 11.11 11.12 11.13 | Manpower, Tools and Plants and Transport Facilities Environmental Consideration Statutory Regulation for Crossing of Roads, Power Lines, Telecommunication Lines, Railway Tracks, etc. Surveying Methods Foundations Erection of Super Structure and Fixing of Tower Accessories Earthing Stringing of Conductors Hot-Line Stringing of E.H.V. Lines Protection of Tower Footings Testing and Commissioning | | | Format for Test Report on Physical Properties of Nuts | 192 | |-----|--|------------| | | j. Format for Inspection Report for Spring Washers - (QCD-3) | 193 | | | k. Format for Inspection Report for Accessories - (QCD-4) | 196 | | | I. Format for Inspection Report for Steel Test Tower - (QCD-5) | 197 | | | B. Sampling Plan for In-process Material | 198 | | | (a) Procedure | 198 | | | (b) Format for Quantity Control Report | 199 | | | (c) Format for Loading Report of Crates | 200 | | | (d) Format for Inspection and Loading Report of Fabrication Shop | 201 | | | (e) Format for Inspection and Loading Report of Model Assembly | 202 | | | (f) Format for Inspection and Loading Report of Model Shop | 203 | | | (g) Format for Out-right Rejection Slip | 204 | | | (h) Format for Rectifiable Rejection Slip | 205 | | | (i) Format for Weekly Records of Shiftwise Acid Strengths | 206 | | | (j) Format for Galvanising Process Inspection Report | 207 | | | (k) Format for Galvanising Inspection Report | 208 | | | (I) Format for Testing Concentration of Prefluxing and Degreasing Solutions | 210 | | | Appendix II: List of Machines required for a well-equipped Tower - Fabricating Workshop | 211 | | | Appendix III: Workshop Chart | 212 | | | Appendix IV: Process Flow Chart for Fabrication of Tower | 213 | | 10. | Design of Foundations | 215 | | | 10.1 General | 215 | | | 10.2 Types of Loads on Foundations | 215 | | | 10.3 Basic Design Requirements | 216 | | | 10.4 Soil Parameters | 216 | | | 10.5 Soil Investigation | 216 | | | 10.6 Types of Soil and Rock | 217 | | | 10.7 Types of Foundations | 218 | | | 10.8 Revetment on Foundation | 240 | | | 10.9 Soil Resistances for Designing Foundation | 240 | | | 10.10 Design Procedure for Foundation | 243 | | | 10.11 Concrete Technology for Tower Foundation Designs | 251 | | | 10.12 Pull-out Tests on Tower Foundation | 251 | | | 10.13 Skin Friction Tests | 254 | | | 10.14 Scale Down Models of Foundation | 255 | | | 10.15 Tests on Submerged Soils | 255 | | | 10.16 Investigation of Foundation of Towers | 258
258 | | | 10.17 Investigation of Foundation of a Tower Line in Service 10.18 Repairs of Foundations of a Tower Line in Service | 259 | | | 10.19 Foundation Defects and their Repairs | 260 | | | Annexures | | | | Annexure - I | 263 | | | Annexure - II | 264 | | | Annexure - III | 265 | | | Annexure - IV | 267 |