
Wx Early Warning System and Hydromet Support for Flood Forecasting

Dr. Ashok Kumar Das Scientist-E, Hydromet Division, New Delhi ashok.das@imd.gov.in/dasakimd@gmail.com मारत मौसम विज्ञान विमाग INDIA METEOROLOGICAL DEPARTMENT

Weather Monitoring Services

Surface Observatories H & 0 6 INDIA Network of Buoys 558 wa na 🧕 Aminian Sea Bay of Bengal Rachillipat MB02 BAY OF BENGAL ARABIAN SEA No. of Pilot Balloon=62 **RS/RW NETWORK=39** Insat-3D tan Multan Pakistan akistan Bhuta Bhuta Bangladesh. adlades Myani (Burn Myanm (Burma Murybai Bay of Bengal อกรุงเทพม Bar Bay of Bengal Sri Lanka

Weather Monitoring Services

Major Services to different Sectors

Cyclone Warning

- Strong Winds
- Heavy Rainfall
- Storm Surge
- Coastal Inundation

Flood Meteorological Warning

- Categorical QPF
- Aerial averaging of rainfall

Hydrological Management

 Design storm values for Hydrological Projects

Agro Meteorological Advisory

- Crop Management Advisories
- Pest & Disease Advisories
- District Level Meteorological Forecast

Navigational Advisory

- Adverse Weather
- Sea State (High Seas)

Fisheries Warning

- Adverse weather
- Sea state
 - (Coastal)

Major Services to different Sectors (Contd.)

Aviation **Meteorological** Forecast

- Route & Terminal Aerodrome forecast
- Weather hazards warning
- Flight Planning information

Environmental Monitoring

- Environmental clearances for industries etc
- Aerosol, Acid rain, **Ozone**, Atmospheric radiation

Heavy Rainfall & **Fog Forecast**

- Safety of culverts & bridges
- Driver's visibility

Mountain Meteorological Forecast

- Cloud burst
- Snow & Avalanche

Storm Surge Warning

- Storm Surge
- Astronomical tide
- Coastal bathymetry effects

Major Services to different Sectors (cont..)

Meteorological Services for Defense

- Troop & logistic movements
- Upper air observations

Meteorological Services to Mountaineers

 Warning for hazardous weather en-route

Meteorological Services to Antarctic Expeditions

 Comprehensive weather services

Meteorological Services for Spacecraft Launching

 Identification of favorable time window for launching

Positional Astronomy

- Astronomical ephemeris
- Indian calendar & Rashtriya Panchang
- Eclipses & Astronomical phenomena

Meteorological Services for Pilgrimage

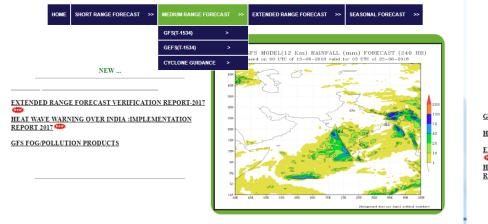
 Amarnath Yatra, Kumbha mela etc

Spatial and Temporal domains of Forecast

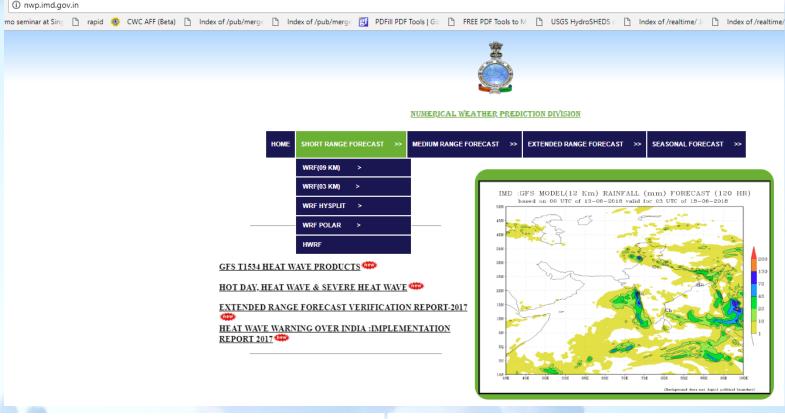
- Nowcasting for next 3-6 hours (city~227) (Venue/ location specific)
- Short Range for next 1-3 days (city~324) (Location /District /State /Met Sub-division)
- Medium Range for next 3-10 days (Districts)
- Extended range for 4 weeks (Met Subdivision/State/ Homogeneous regions)
- Long range for month/season (Homogeneous regions/country)

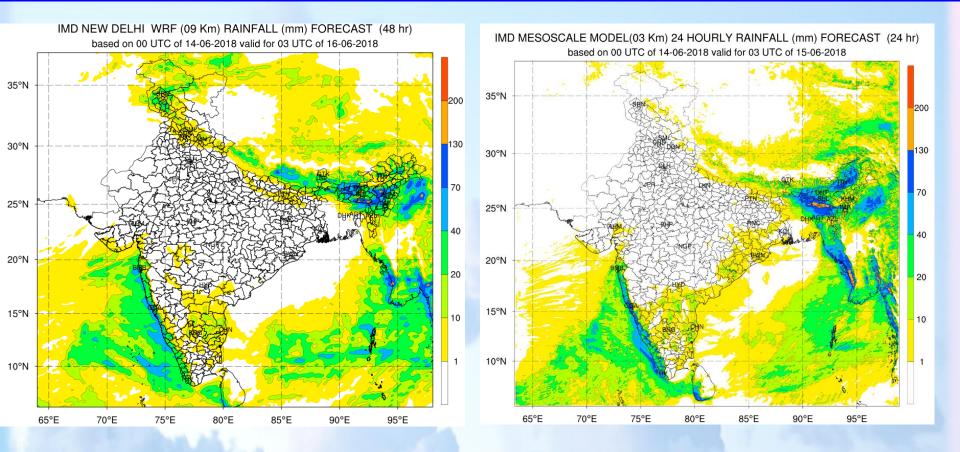
NWP modelling Capabilities

- GFS-T1534L64 with 4-D Hybrid En-Var Data Assimilation
 - 12 km resolution and 6 hour interval for 10 days
 - twice daily at 00 and 12 UTC
 - delayed by 6 hours
- WRF with 3D Var assimilation using multiple radar observations
 - 9 km forecast for 3 days and 3 hour interval
 - twice daily at 00 and 12 UTC
 - delayed by 6 and half hours
- WRF at 3 km resolution generate hourly forecasts for 2 days
 - twice daily at 00 and 12 UTC
 - delayed by 10 hours
- Global Ensemble forecasting system (GEFS) T1534
 - 12 km resolution with 6 hourly interval
 - twice daily at 00 and 12 UTC
- Multi-Model Ensemble forecasts (3 global Models: JMA, NCEP, IMD)
 - 25 km resolution for rainfall
 - Once daily at 00 UTC
 - Delayed by 6 hours
- Extended Range Forecast run for 32 days
 - Updated every Thursday day

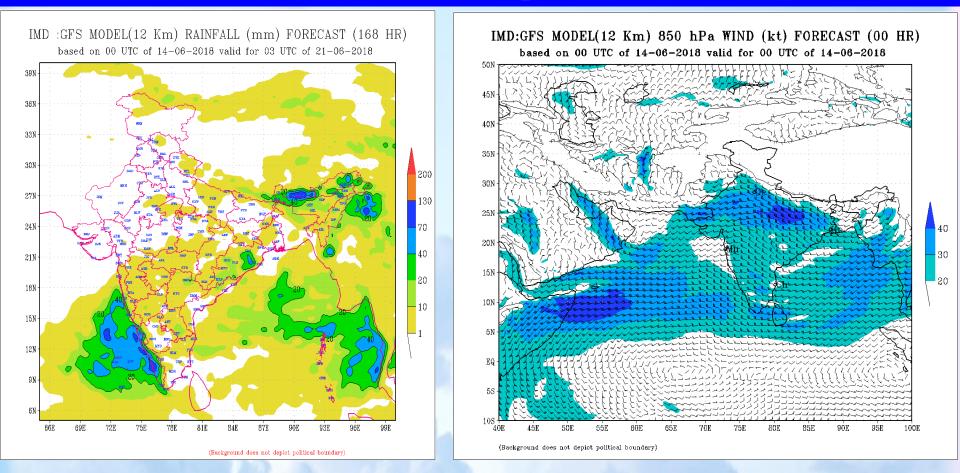


भारत मौसम विज्ञान विभाग INDIA METEOROLOGICAL DEPARTMENT

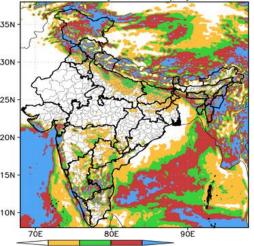


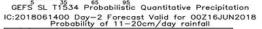


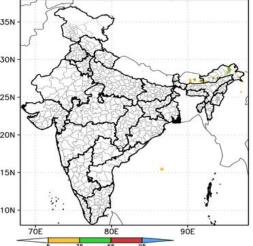
NUMERICAL WEATHER PREDICTION DIVISION


WRF model products

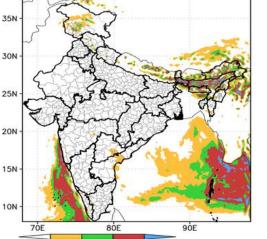
GFS model products

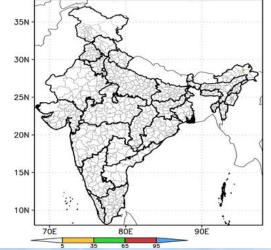


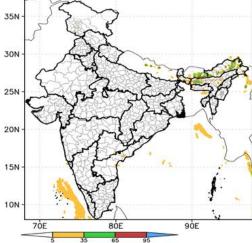




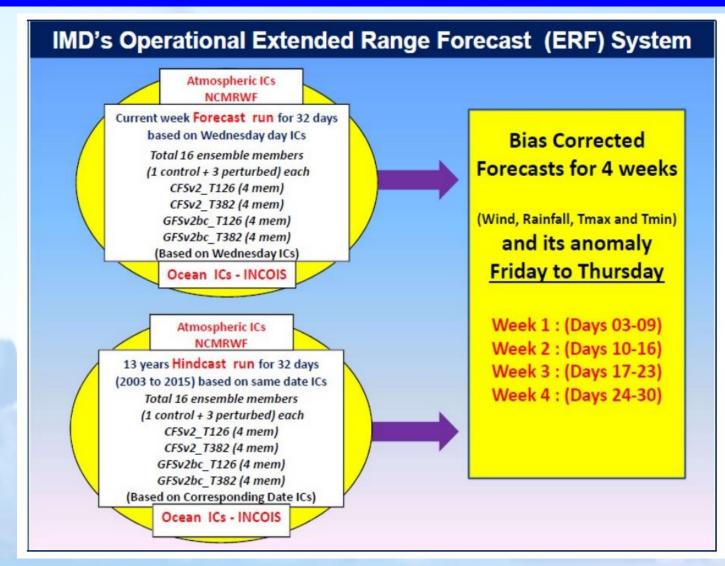
GEFS model products


GEFS SL T1534 Probabilistic Quantitative Precipitation IC:2018061400 Day-2 Forecast Valid for 00216JUN2018 Probability of 0.1-2cm/day rainfall

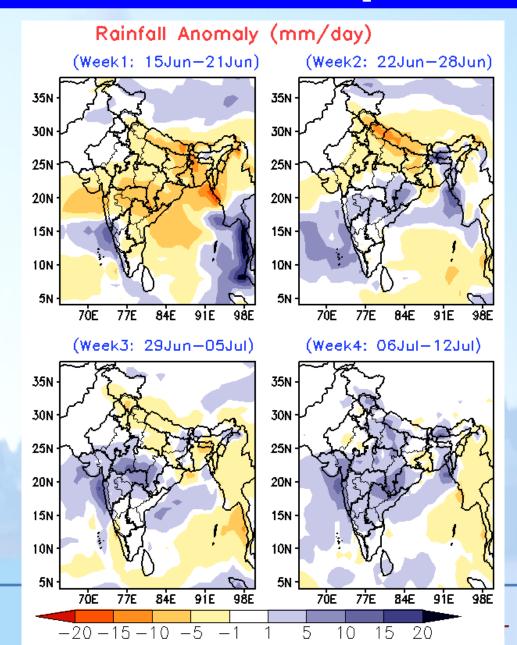


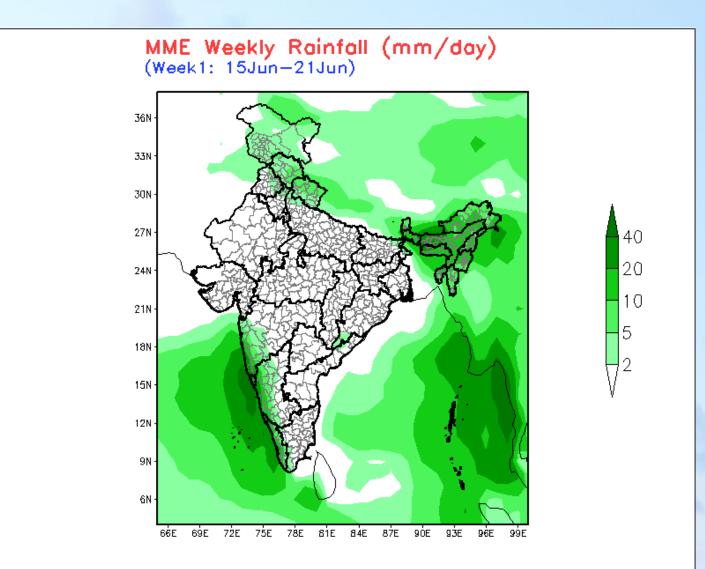


GEFS SL T1534 Probabilistic Quantitative Precipitation IC:2018061400 Day-2 Forecast Valid for 00216JUN2018 Probability of 2-6cm/day rainfall GEFS SL T1534 Probabilistic Quantitative Precipitation IC:2018061400 Day-2 Forecast Valid for 00Z16JUN2018 Probability of 6-11cm/day rainfall

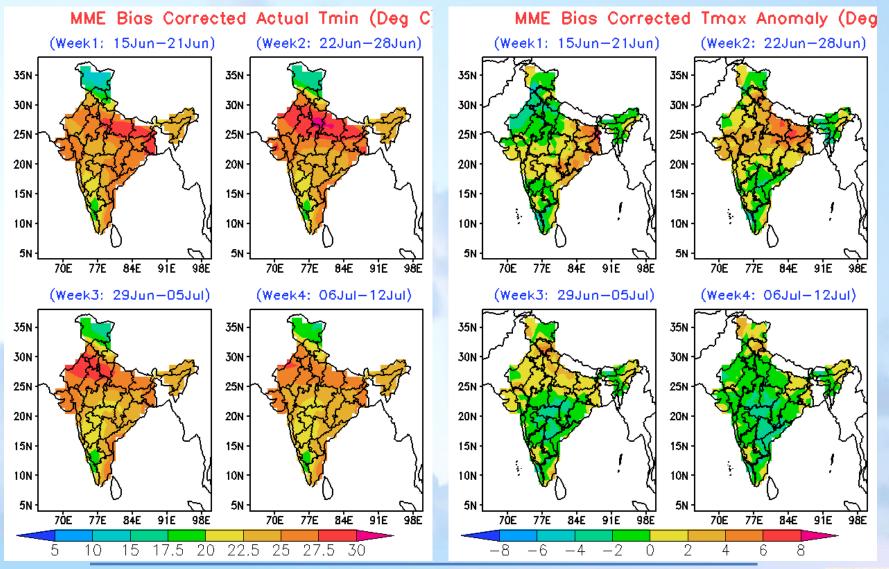


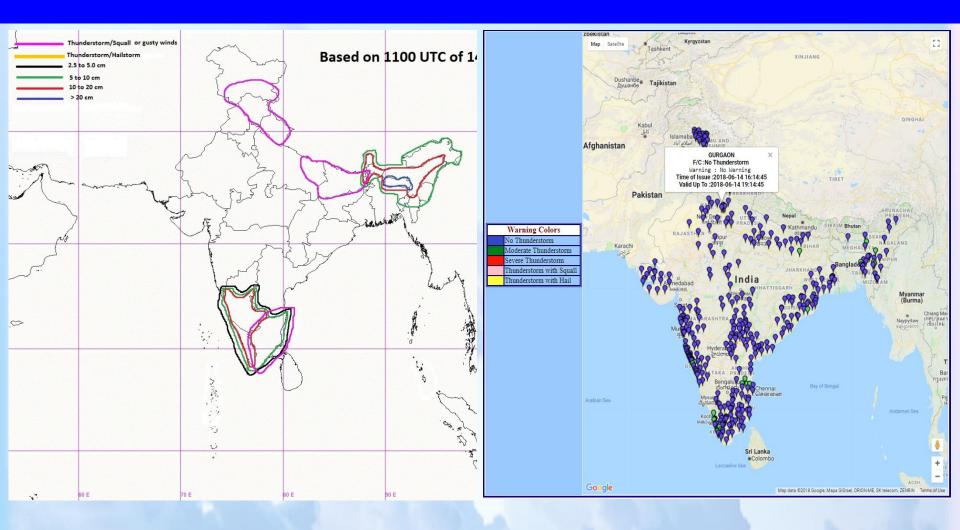
ERPS model

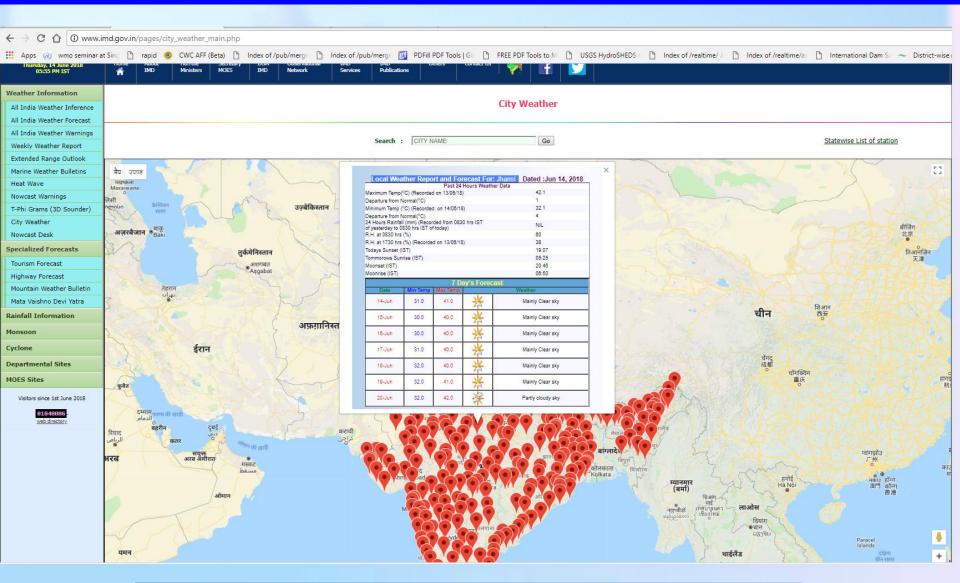




ERPS model products


ERPS model products


ERPS model products


Nowcast Guidance/Warning Products

City Forecast

Hydromet-services

LANDMARK: BACKGROUND OF HYDROMET DIVISION

- 1890- The Rainfall Resolution of India which made India Meteorological Department as controlling authority for all rainfall measuring agencies.
- 1949 A special hydrometeorological unit was established at Alipore, Kolkata to provide operational met service to Damoder Valley Corporation.
- 1963 Storm Analysis Unit was established as per Khosala Committee's recommendations
- > 1971 The Hydromet Division is formally established to cater increasing demands of value added information to rainfall data as per users' specific needs.

SERVICES RENDERED BY HYDROMET DIVISION

Hydro met Division is providing the services in the field of

- Hydro met Support (QPF) for Flood Forecasting
- Rainfall Monitoring
- Hydro met Design

Hydro met Forecasting (QPF) for Flood Forecasting

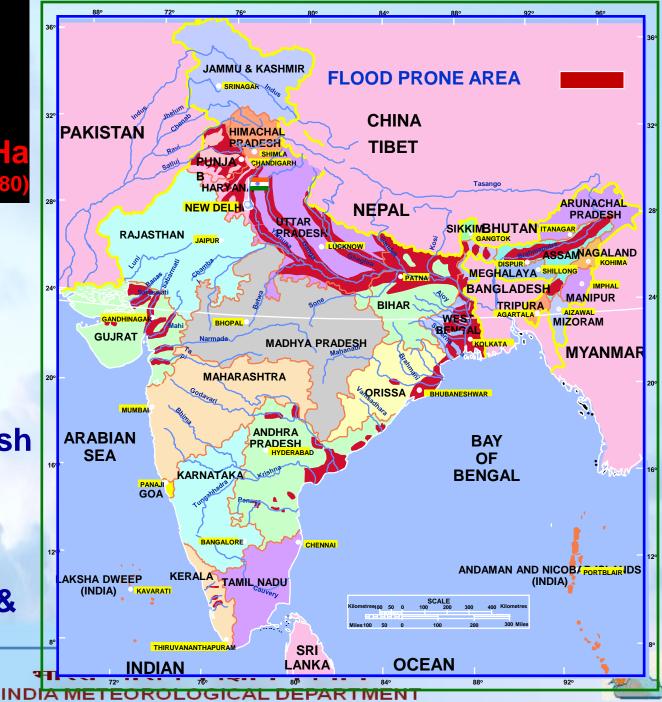
NATURE OF FLOODS IN INDIA

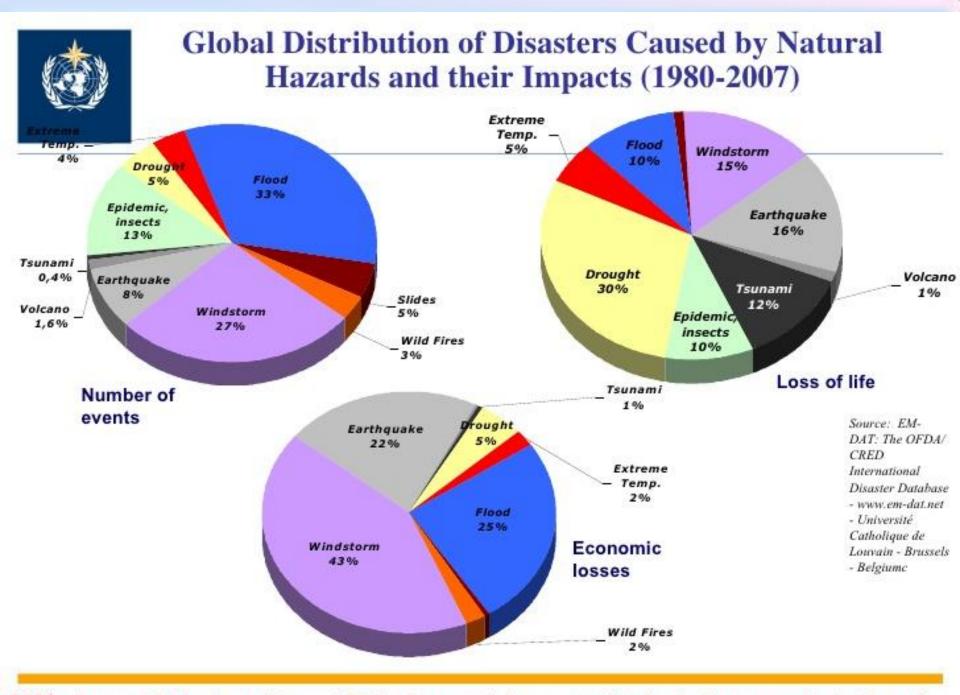
Maximum floods Occur in S-W MONSOON season.

Flood is an ANNUAL FEATURE of major rivers.

According to the estimate of the National Commission on Flood, the area prone to floods in the country was of the order of 40 million hectares, out of which it is considered that 80%, i.e., 32 million hectares could be provided with reasonable degree of protection.

On an average75000 SQ. KMS of area & 33 million population faces FLOOD WRATH every year.




Flood Prone areas in India ~ 40 million Ha (RBA,1980)

 Major Flood Prone States: Assam, Bihar,West Bengal, UP,

 ✓ Odisha & Andhra Pradesh

 Major Flood Prone Basins: Ganga, Brahmaputra & Mahanadi

90% of events, 70% of casualties and 75% of economic losses are related to hydro-meteorological hazards.

EXPERTS OPINION

Though total immunity from floods is not feasible, the losses particularly of lives and movable property can be minimized by

- Structural Measures
- Non Structural Measures

StructuralNon StructuralConstruction of Dams,
Embankments etcFlood Warnings
Flood plain zoning
etcCostlyRelatively less costlySaves both movable and
immovable propertySaves only movable property.

ORAGANISATIONS DEALING FLOODS

FLOOD CONTROL DEPARTMENTS OF STATES
CENTRAL WATER COMMISSION

- ***INDIA METEOROLOGICAL DEPTT.**
- *NATIONAL DISASTER MANAGEMENT AUTHORITY
- *** STATE DISASTER MANAGEMENT AUTHORITY**
- *** GANGA FLOOD CONTROL COMMISSION**
- *** BRAHAMPUTRA BOARD**
- *** MININISTRY OF AGRICULTURE**
- *** STATE CRISES MANAGEMENT GROUPS**

I. METEOROLOGICAL FACTORS

- (a). HEAVY RAINFALL
- (b). CYCLONES, THUNDERSTORMS, CLOUD BURSTS
- (c). SUDDEN MELTING OF SNOW / ICE
- (d). STORM SURGES

II.GEOGRAPHICAL FACTORS (a). EARTH QUAKES (b). LAND SLIDES ETC (C).GLACIAL OUT BURST

III. MAN MADE FACTORS

a). FAILURE OF DAMS AND OTHER CONTROL WORKS LIKE RESERVOIRS b). ENCROACHMENT IN FLOOD PLAIN AREAS

IV. OTHER FACTORS (LOCAL SCALE)

- (a). DEBRIS FLOW
- (b). BACK WATER
- (c). CHANGE IN RIVER COURSE

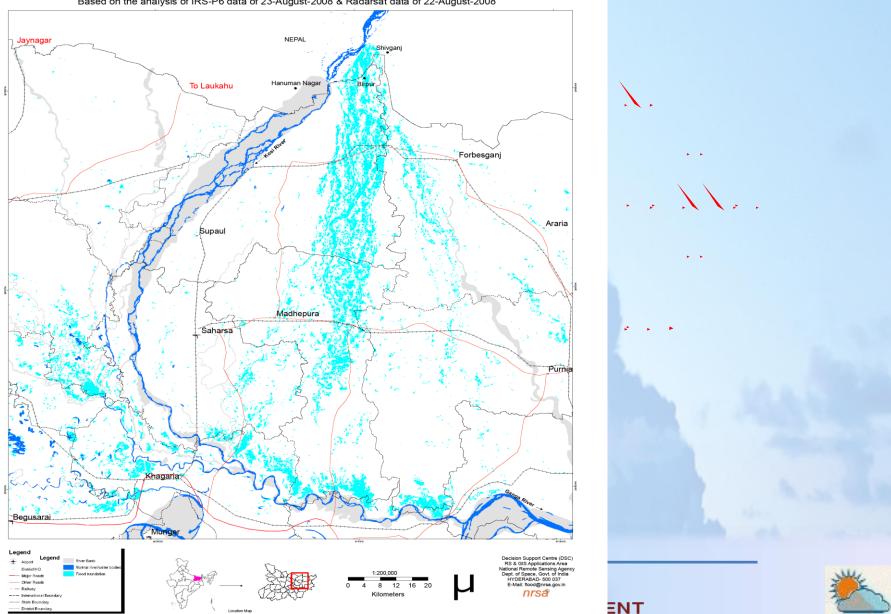
However majority of floods occur due to Heavy rains in short period. Hence accurate QPF is a prime factor of reasonable Flood forecasting and warning.

A glacial lake outburst flood is a type of outburst flood occurring when water dammed by a glacier or a moraine is released.

ENCROACHMENT IN FLOOD PLAIN AREAS

तिज्ञान विमाग INDIA METEOROLOGICAL DEPARTMENT

AVALANCHES: A huge mass of snow, ice, and rocks falling rapidly down a mountainside.

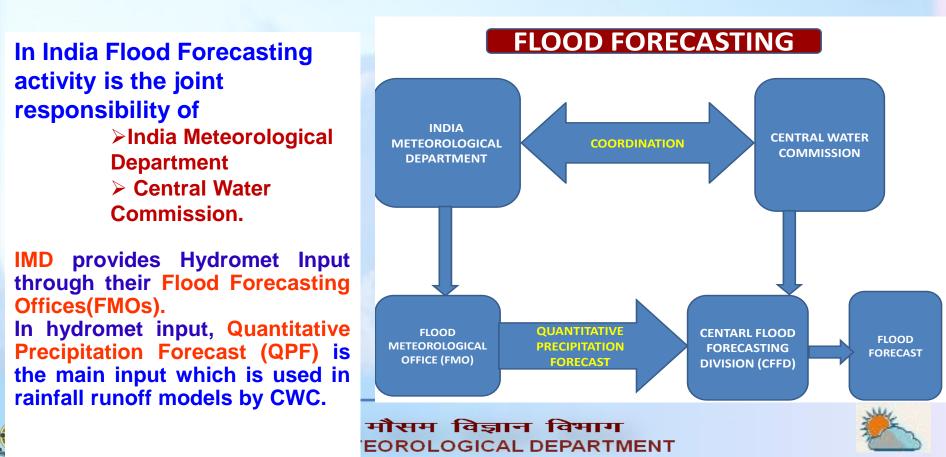


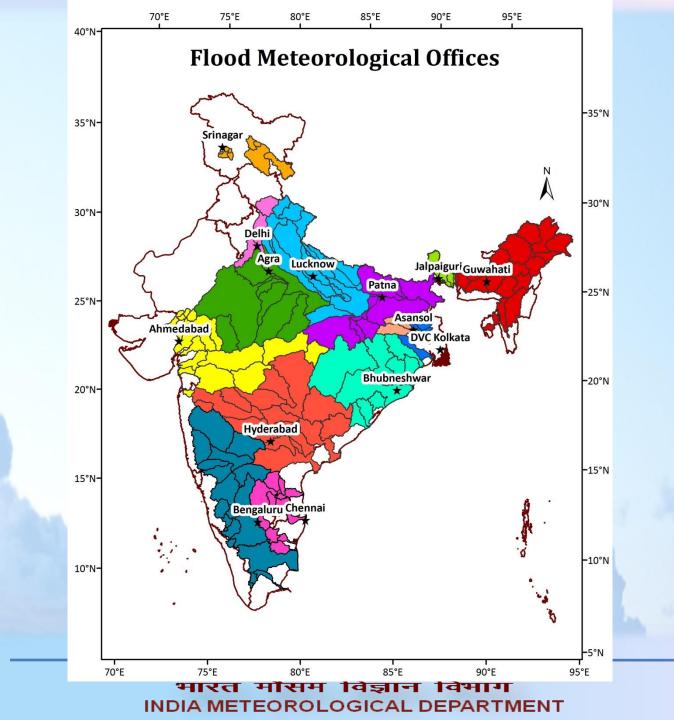
LANDSLIDES: The sliding down of a mass of earth or rock from a mountain.

विज्ञान विभाग NDIA METEOROLOGICAL DEPARTMENT

HIGH LEVEL COMMITTEES CONSTITUTED TO STUDY PROBLEM OF FLOODS

- ✤ POLICY STATEMENT- 1954
- HIGH LEVEL COMMITTEE ON FLOODS-1957
- POLICY STATEMENT- 1958
- MINISTERIAL COMMITTEE ON FLOOD CONTROL- 1964
- MINISTERIAL COMMITTEE ON FLOODS & FLOOD RELIEF-1972





Flood Forecasting

MINISTERIAL COMMITTEE ON FLOODS & FLOOD RELIEF-1972 RECOMMENDED THAT

- Flood Forecasting Centres should be established in all flood prone basins.
- Flood Meteorological Offices should be established by India Meteorological Department to work in close co-operation with Flood Forecasting Centres

SI. No.	FMOs	Date of Estt.	River Basins
1	Agra	29-Mar-85	Banganga, Chambal, Betwa, Ken, Yamuna
2	Ahmedabad	Jan-74	Narmada, Tapi, Daman-Ganga, Sabarmati, Banas, Mahi
3	Asansol	Mar-80	Ajoy, Mayurakshi, Kangsabati
4	Bhubaneswar	11-Jan-74	Subarnarekha, Baitarni, Burhabalang, Vamsadhara, Brahmani, Mahanadi, Rushikulya
5	Guwahati	Aug-75	Brahmaputra, Barak, Dehung, Lohit, Buridihing, Subansiri, Dhansiri (N,S), Jiabharali, Kapili, Manas/ Beki, Sankosh
6	Hyderabad	Apr-77	Godavari, Krishna
7	Jalpaiguri	24-Jul-74	Teesta, Jaldhaka, Raidak
8	Lucknow	Sep-74	Ghaghra, Rapti, Ramganga, Gomti, Sai, Sahibi, Chhatang, Bhagirathi, Alaknanda, Ganga
9	New Delhi	15-Jun-74	Yamuna, Sahibi
10	Patna	Dec-73	Kosi, Mahananda, Adhwara, Bagmati, Gandak, Punpun, Sone, Kanhar, North Koel
11	MC Srinagar	Jun-15	Jhelum, Dah, Nimmo, Khalsi
12	RMC Chennai	Jun-16	Pennar, Vellar
13	MC Bengaluru	Jun-16	Krishna, Cauvery, Tungabhadra, Vaigai
14	DVC	1949	Barakar, Damodar, Lower Valley

Collection of rainfall data

Selection of stations

- Rainfall data are collected from IMD surface observatories, FMO network and other IMD observatories as well as other organisation observatories.
- It may be ensured that rainfall data received from the network maintained by other agencies confirm to IMD Standards.
- The rainfall data of state raingauge should also be collected for the stations lying the river basins from concerned FFD.
- AWS/ARGs data, within the area of basin/sub-basin, may be used after scrutiny/validation of data and rainfall data from those stations.

Collection of rainfall data

Frequency of collection

- FMOs receive rainfall data from hydromet observatories recorded at 0830 hrs. IST as a routine.
- In case of expectation of heavy to very heavy rainfall, FMOs in consultation with RMCs may examine the possibility of obtaining rainfall data at more frequent intervals, for instance, once in six hours.

Collection of rainfall data

Mode of communication

- The rainfall data may be collected by landline telephone, Fax, mobile phone, e-mail, internet, websites etc.
- When the normal mode of communications fail, efforts should be made for transmission of rainfall data through alternate channels including seeking help of the local police authorities and state government officials for use of their channels of communication in extreme cases.
- During the failure of internet services which is generally mode of communication for exchange of all information and data, other means of communication may be predecided and used with co-ordination with CWC.

Period of Watch of Flood Met. Offices

- The flood season may vary depending upon location of basin and onset/withdrawal of S-W monsoon.
 - Brahmaputra Basin from 1st May to 31st October
 - All other basins upto Krishna basin from 1st June to 31st October and
 - Basins south of Krishna basin (Pennar, Cauvery and southern rivers) from 1st June to 31st December.

Weather Charts

Synoptic Charts:

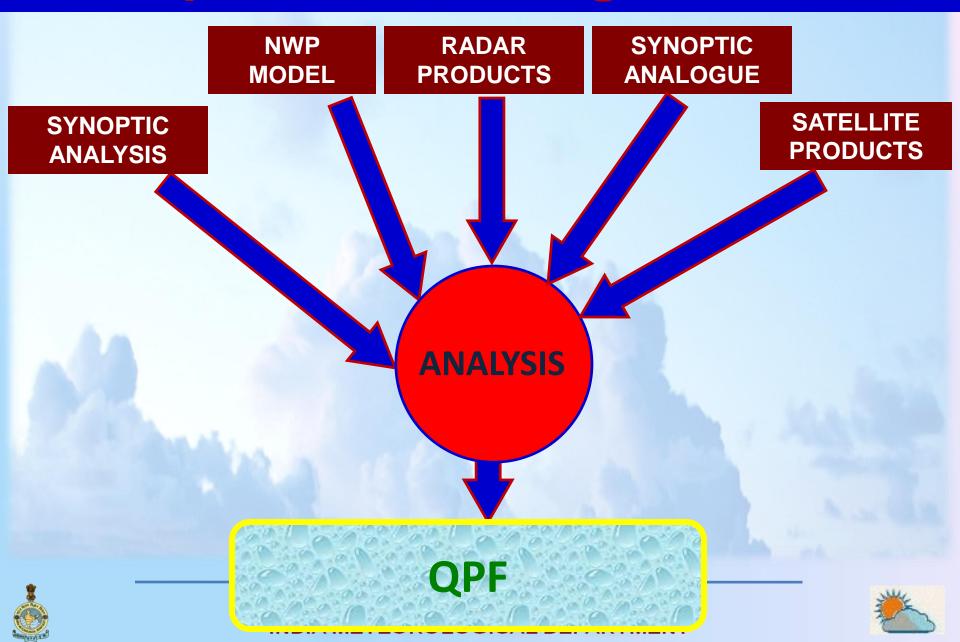
FMOs co-located with Met. Centres should use the weather charts prepared by them. FMOs which are not co-located with MCs should consult/obtain from the respective RMC/MC, the real time weather charts prepared by them.

Rainfall analysis charts:

Rainfall analysis charts should be prepared for basins and sub-basins. Normally rainfall analysis charts may be prepared daily or more frequently if situation so demands.

Early Warning System for Floods

Flood Forecasting Role of IMD


- Observation and Collection of meteorological Data
- Transmission of data to forecast centers
- Analysis of data and formulation of forecast (Quantitative Precipitation Forecasts) & issue of heavy rainfall warnings
- Dissemination of forecasts/warnings to Flood Forecast Centres of CWC

Inputs for issuing of QPF

Information to be supplied to concerned FFD.

- All FMOs for issue of 'Hydromet Bulletin' which contains
 - synoptic situation(over the jurisdiction area),
 - Sub-basin wise spatial and Intensity distribution of Rainfall with Categorical QPF (0, 0.1-10, 11-25, 26-50, 51-100, >100mm) for day 1 to day 3.
 - Heavy Rainfall Warnings(HRW) and Outlook for consequent 4 days.
 - Significant Rainfall (≥5cm).
 - Realized basin average rainfall at 0830 hrs IST.
- If any significant development of weather takes place after issue of hydromet bulletin, it needs to be communicated to concerned FFD by e-mail/fax/telephone etc.
- DURING FLOOD SEASON, FMOs send QPF Bulletin (9.30AM) and HYDROMET BULLETINS (12.30PM) to CFFD

Information to be supplied to concerned FFD.

- Advance rainfall warning may be given so that concerned FFD is in a position to issue 'Flood Alert'(In the case of Depression / Cyclonic storms, likely direction of movement may form the basis of such warnings).
- The daily weather summaries and other such meteorological information as required by concerned FFD may be supplied.
- In case concerned FFD desires, rainfall analysis map may be supplied.

QPF during non flood season

- During the period of 'Flood Alert' for specified basins as notified by concerned FFD.
- During the weather situations where there is expectation of significant rainfall leading to floods in a particular basin/sub-basin.
- If heavy rainfall is expected during non-flood season or in the event of formation of Cyclone, concerned FMO need not to wait for any demand from concerned FFD to issue QPF/HM Bulletins.

QPF VERIFICATION REPORT

Verification of QPF:

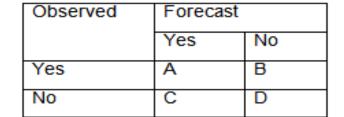
Following different skill scores are to be computed from 6X6 Contingency table;

- Percentage Correct Forecast (PC)
- Heidke Skill Score (HSS)
- Critical Success Index (CSI)

Observed	Forecast range (mm)											
range	0	1-10	11-25	26-50	51-100	>100	Total					
(mm)												
0	а	b	с	d	е	f	А					
1-10	g	h	i	j	k	1	В					
11-25	m	n	0	р	q	r	С					
26-50	S	t	u	v	w	x	D					
51-100	У	z	aa	ab	ac	ad	E					
>100	ae	af	ag	ah	ai	ai	F					
Total	G	Н	1	J	К	L	Т					

 $PC = \frac{a+h+o+v+ac+aj}{T} X100$

 $\text{CSI} = \frac{a}{A+G-a} \underbrace{\stackrel{h}{\underset{B+H-h}{\longrightarrow}}, \frac{o}{C+I-o}, \frac{v}{D+J-v}, \frac{ac}{E+K-ac}, \frac{aj}{F+L-aj}}_{F+L-aj}$


 $HSS = \frac{\frac{T(a+h+o+v+ac+aj)-(AG+BH+CI+DJ+EK+FL)}{T}}{\frac{T+T-(AG+BH+CI+DJ+EK+FL)}{T}}$

QPF VERIFICATION REPORT

The POD, FAR, MR, C-NON, CSI, BIAS, PC, TSS and HSS for each category is to be computed by reducing the 6X6 contingency table into 2X2 contingency table for occurrence / non occurrence (YES/NO). The computing procedure for various skill scores tests are as follows over sub basins.

Probability of Detection (POD) $= \left(\frac{A}{A+B}\right)$ False Alarm Rate (FAR)= C Missing Rate (MR)= Correct Non-Occurrence (C-NON) = $\frac{D}{C+D}$ Critical Success Index (CSI)=Threat Score= $\frac{A}{A+B+C}$ Bias for occurrence (BIAS) = $\frac{A+C}{A+B}$ Percentage Correct (PC) = $\frac{A+D}{A+B+C+D}X100 =$ Hit Rate X 100 True Skill Score (TSS) = $\frac{A}{A+B} + \frac{D}{C+D} - 1$ Heidke skill score (HSS) = $2\left\{\frac{AD-BC}{B^2+C^2+2AD+(B+C)(A+D)}\right\}$ The final skill score will be the average of these.

For best/perfect forecast, POD=1, FAR=0, MR=0

भारत मौ INDIA METEC

FMOs activities during non flood season

FMOs also perform following functions during non flood season :

Preparation of synoptic cum statistical analogue model for QPF for each sub basin for their area of jurisdiction. It is to be updated after five years

□ Preparation of hydrometeorology of river basins

□ FMO stations are being inspected by Zonel Instrument Maintenance Centre (ZIMC) every year for accurate and efficient reception of rainfall data on real time basis

QUANTITATIVE PRECIPITATION FORECAST

WHAT IS QUANTITATIVE PRECIPITATION FORECAST (QPF)?

QPF IS THE EXPECTED AMOUNT OF RAINFALL ACCUMULATED OVER A SPECIFIED TIME PERIOD OVER SPECIFIED AREA.

There are two approaches for its computation 1) Synoptic Analogue and 2) Dynamical.

Development of Techniques for QPF - basin wise

It is essential to have synoptic-cum-statistical analogue models for each basin under the jurisdiction of a FMO. On the basis of availability of longer data sets, FMOs should prepare such analogues for the basins.

Existing analogue, if prepared more than five years back should be updated.

FMO AGRA

Frequency of Occurrence of Aerial Rainfall more than 10 mm for various synoptic situations and different locations over LOWER YAMUNA BASIN

											Ye	ar 1'	998 [.]	-200	Year 1998-2006													
	11-	26-	51-	>100) Total	11-	26-	51-	>100) Total	11-	26-	51-	>100	0 Total	11- 25			>100) Total	11-	26-		>100) Total	l Grand		
System	System 25 50 100 File Sub-basin A			25	5 50 100 100 100 100 100 100 100 100 100				25	25 50 100 Field Ford					50 Sub	100 h hasi			25 50 100 100 100 100 100 100 100 100 100					Tatal				
C11	0	-			0	0		o-basi 0		0	0				0	0		b-basi 0		0	0					Total		
S11	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0		
S12	1	0 1	0	0	1	1	0 1	1 0	0 0	2	0	1 0	0	0	1	2	1	1	0 0	3 6	1 4	1 0	0	0	2	9 15		
S13 S14	0	1	-	-	1	3		-	0	-	0	-	-	0	0	2	3		-			0	-	0	-	2		
Total	1	2	0 0	0 0	1 3	4	0 1	0 1	0	0 6	1	0 1	0 0	0 0	1 2	3	0 4	0 2	0 0	0 9	0 5	1	0 0	0	0 6	2		
S21	_					4		_	0			2		0	2 7	2	4	2	-						6	20		
	0	0	0	0	0		0	0		2	4		1			2			0	8	4	2	0	0				
S22	0	0	0	0	0	3	3	0	0	6	2	1	0	0	3	5	0	0	0	5	9	3	1	0	13	27		
S23	2	0	0	0	2	8	0	1	0	9	2	0	0	0	2	11	6	0	0	17	2	0	1	0	3	33		
S24	9	7	0	0	16	6	0	0	0	6	4	1	2	0	7	3	1	0	0	4	3	2	0	0	5	38		
Total	11	7	0	0	18	19	3	1	0	23	12	4	3	0	19	21	11	2	0	34	18	7	2	0	27	121		
S31	3	0	0	0	3	2	0	0	0	2	3	1	1	0	5	8	0	0	0	8	19	3	0	0	22	40		
S32	0	0	0	0	0	2	1	0	0	3	2	0	0	0	2	5	0	0	0	5	11	0	0	0	11	21		
S33	3	3	0	0	6	11	1	0	0	12	3	1	0	0	4	7	6	0	0	13	1	0	0	0	1	36		
S34	16	4	1	0	21	8	1	1	0	10	21	7	0	0	28	12	4	0	0	16	13	2	0	0	15	90		
Total	22	7	1	0	30	23	3	1	0	27	29	9	1	0	39	32	10	0	0	42	44	5	0	0	49	187		
S41	0	0	0	0	0	0	0	0	0	0	7	0	0	0	7	5	4	0	0	9	22	8	2	0	32	48		
S42	0	0	0	0	0	1	0	0	0	1	0	1	0	0	1	1	0	0	0	1	9	0	0	0	9	12		
S43	0	0	0	0	0	7	4	1	0	12	2	0	0	0	2	15	3	0	0	19	4	0	0	0	4	37		
S44	25	6	2	0	33	9	5	1	0	15	18	4	0	0	22	11	0	2	0	13	1	0	0	0	1	84		
Other	6	2	0	0	8	3	3	0	0	6	5	1	2	0	8	5	1	0	0	6	7	4	0	0	11	39		
Total	31	8	2	0	41	20	12	2	0	34	32	6	2	0	40	37	8	2	1	48	43	12	2	0	57	220		
G.Total	65	24	3	0	92	66	19	5	0	90	74	20	6	0	100	93	33	6	1	133	110	25	4	0	139	554		
	Legend:Sij								i=1	1 Depression/Deep Depression/Cyclone							j=1		East U.P.									
		i: Intesity Classification of System						ation	of Sys ⁴	tem	i=2	Well Marked Low/Low)	j=2	Fast M.P. & adj. areas					1			

j: Location Classification of System **i=3**

Depression/Cyclone Well Marked Low/Low Upper Air Cyclonic Circulation Monsoon Trough

i=4

j=2 Fast M.P. & adj. areas j=3 West M.P. j=4 West M.P. and adj. Rajasthan

Concel of

Sub basin wise Dynamical Model Rainfall

WRF(ARW) (9km x 9km) (00utc & 12 utc), Multi-Model Ensemble (0.25 deg x 0.25 deg) (00utc) and GFS (T-1534) (12kmX12km) (00utc) sub-basin wise rainfall forecast are being uploaded on IMD's website in real-time

Sub basin wise Dynamical Model Rainfall

FLOOD MET OFFICE LUCKNOW

IMD MME Rainfall(mm) Forecast (24hr)

DAY2 FCST VALID FOR 26062015 TILL 08:30 IST

 \cap

86°E

84°E

9 mm 5 mm 4 mm 13 mm 5 mm 5 mm 5 mm 6 mm

86°E

Day 1 FCST valid for: 01.09.2016 TILL 08:30 IST

82°E

84°E

7 mm

2 mm

3 mm

8 mm

2 mm

200

130

70

40

20

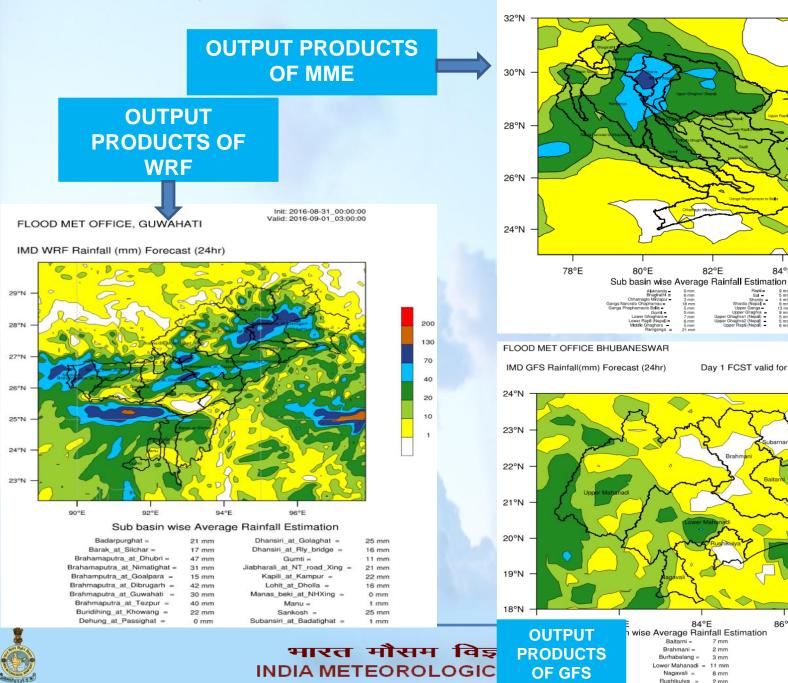
10

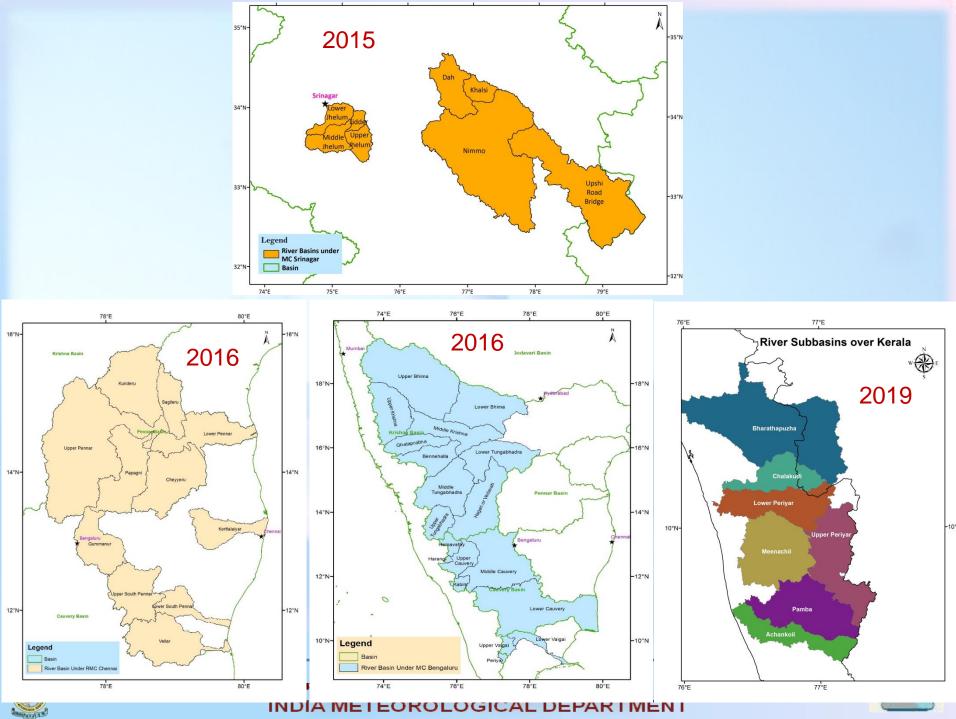
1

200

130

70


40


20

10

1

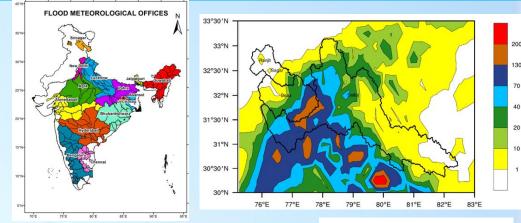
88°E

INDIA METEOROLOGICAL DEPARTMENT

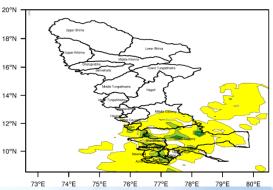
Hydromet Support for Flood Forecasting

- NWP model based Sub basin wise QPF (WRF and GFS) is extended for
 - i. Kerala River basin
 - ii. Ranjit Sagar dam catchment area
- Daily monitoring of Flood Situation & QPF issued by IMD provided to Central Agencies
- MoU between TERI and IMD for joint activity 'Development of Flood Warning System for Guwahati' and "Jorhat".
- NWP Model data (WRF & GFS) are provided operationally to CWC for their flood forecasting model

Date


upto Mathu

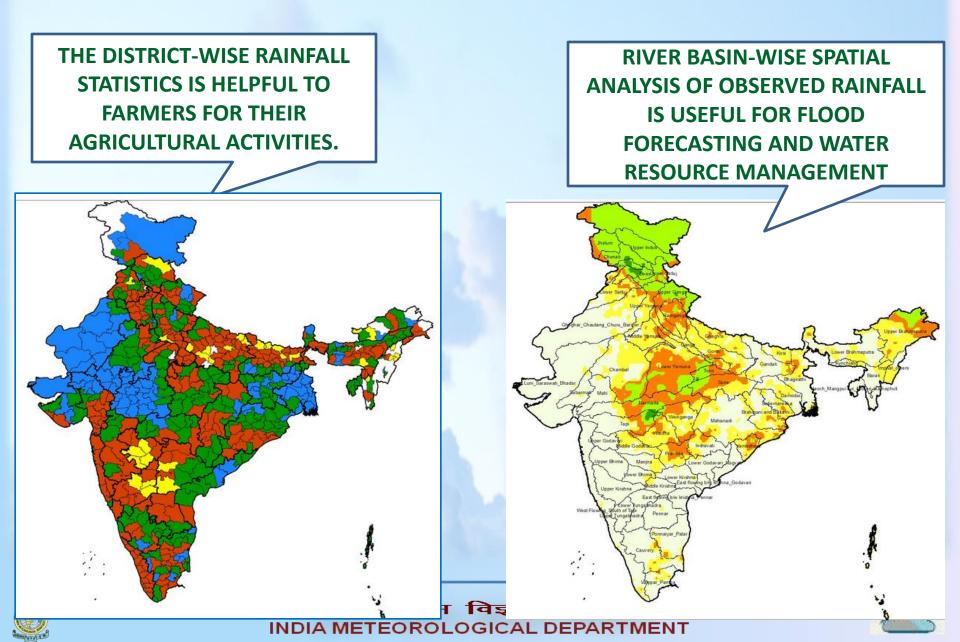
Flood Leve


Real Time Monitoring of Flood Forecasting Activities

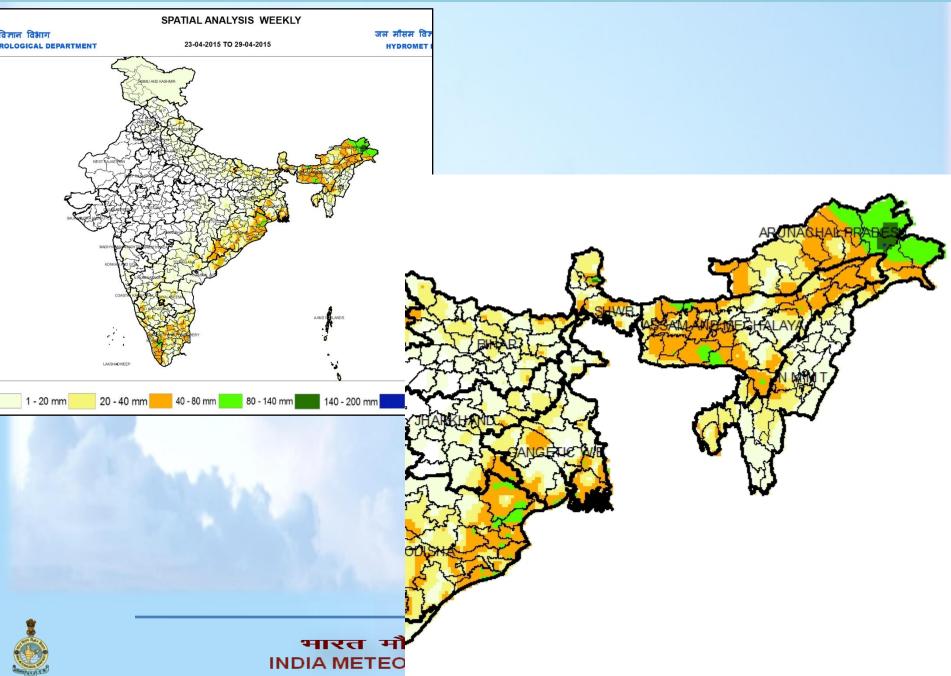
itative Precipitation Forecast (QPF)

Day-2

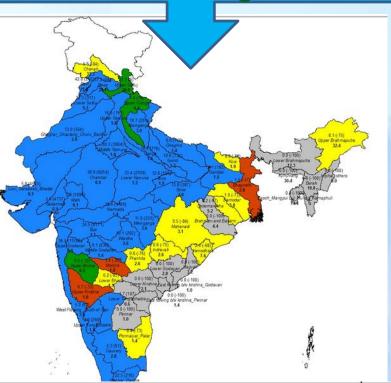
IMD GFS Rainfall(mm) Forecast (96hr) Day 4 FCST valid for: 09.03.2019 TILL 08:



CRIS (CUSTOMISED RAINFALL INFORMATION SYSTEM)


THE SYSTEM CRIS WHICH WAS MADE OPERATIONAL ON 15TH JANUARY, 2015 ON IMD WEBSITE PROVIDES REAL-TIME RAINFALL INFORMATION BY MEANS OF GIS BASED RAINFALL PRODUCTS FOR ANY PLACE IN INDIA.

CUSTOMISED RAINFALL INFORMATION SYSTEM



SPATIAL DISTRIBUTION

Products on CRIS (River Basin wise information)

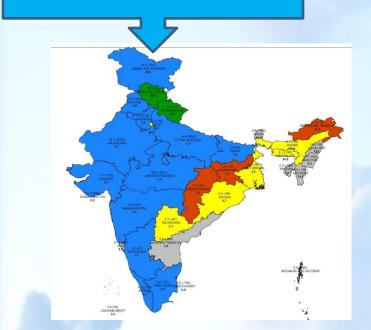
Computation of River basin wise rainfall statistics(actual, normal & % dep.) which is useful for flood forecasting and Water Resources management

Legend :

NOTES :

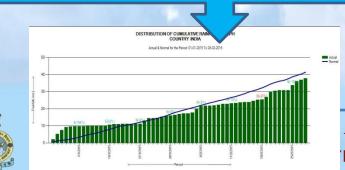
मारत मौसम विज्ञान विमाग INDIA METEOROLOGICAL DEPARTMENT

📕 Excess [20% or more] 📕 Normal [-19% to19%] 📕 Deficient [-59% to-20%] 📙 Scanty [-99% to-60%] 📕 No Rain [-100%] 🔄 NO DATA



Products on CRIS

State-wise Rainfall map


Customized Rainfall Information System (CRIS) Hydromet Division India Meteorological Department Ministry Of Earth Sciences New Delh-110 003

District wise rainfall map for a State (Available for all states)

Cumulative Rainfall distribution. Useful for real time rainfall information

मौसम विचान विसाग Legend : EOROLOGI Excess [20% or more] Normal [-1940 With the second second

Excess [20% or more] Normal [-19% to19%] Deficient [-59% to-20%] Scanty [-99% to-50%] No Rain [-100%] NO DATA NOTES :

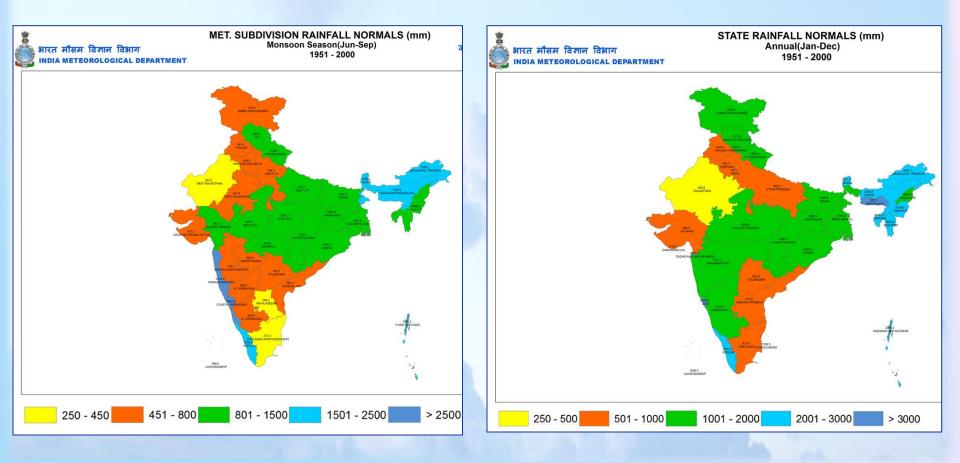
Products on CRIS

Plotting of Hourly cumulative (daily) AWS/ARG rainfall data on Pan India. Useful for real time rainfall information

SRILANKA Colombo

Customized Rainfall Information System (CRIS) Cumulative Rainfall Real Time Station Data (ARG/AWS) Dated: 04-03-2015 and Time:03:00 UTC

UGICAL DEPARTIVIEN


Hydromet Division, New Delhi

S NO.	MET SUBDIVISION	Week End 7-1-2015	Week End 14-1-2015	Week End 21-1-2015	Week End 28-1-2015	Week End 4-1-2015	Week End 11-2-2015	Week End 18-2-2015	Week End 25-2-2015
1	NMMT	221	-5	-47	-100	-100	-100	-44	-2
2	VIDARBHA	909	-100	-100	-100	-100	49	-91	-72
3	WEST MADHYA PRADESH	1314	-98	-49	392	-84	187	-66	-100
4	RAYALASEEMA	92	-100	-99	-100	-100	-100	-100	-100
5	TAMILNADU & PONDICHERY	22	-99	-100	-43	-97	-94	-98	-100
6	BIHAR	350	-100	-99	-32	-51	-100	-75	-64
7	MARATHWADA	1330	-100	-100	-100	-100	55	-100	-100
8	N. I. KARNATAKA	479	-100	-100	-100	-100	-100	-100	-100
9	S. I. KARNATAKA	382	-100	-62	-100	-100	-100	-99	-86
10	ASSAM & MEGHALAYA	172	-67	-80	-100	-85	-100	-66	-64
11	GANGETIC WEST BENGAL	268	-95	-100	-100	-97	-100	6	-49
12	JHARKHAND	213	-100	-100	-75	-31	-99	-70	-75
13	SHWB & SIKKIM	151	-69	-100	-100	-78	-100	-22	-39
14	EAST MADHYA PRADESH	564	-100	-100	71	-17	64	-11	-97
15	CHHATTISGARH	736	-100	-100	-100	-85	-80	-83	-92
16	SAURASHTRA & KUTCH	-97	-100	11608	7478	-100	-100	-100	-100
17	COASTAL ANDHRA PRADESH	-38	-100	-98	-100	-87	-100	-91	-98
18	ARUNACHAL PRADESH	-3	-88	-100	-97	-26	-94	-62	-80
19	TELANGANA	998	-100	-100	-100	-100	-100	-100	-100
20	LAKSHADWEEP	-100	-70	-100	-90	-89	-100	-100	-100
21	COASTAL KARNATAKA	377	-100	-100	-100	-100	-100	848	366
22	A & N ISLAND	-75	196	1147	-97	-66	-92	-57	-38
23	KONKAN & GOA	1583	-100	-100	-100	-100	-100	-100	-100
24	EAST RAJASTHAN	-83	-99	706	933	-100	-92	-100	-99
25	PUNJAB	-73	2	43	14	20	-100	-67	93
26	UTTARAKHAND	241	-66	-75	-36	2	-100	-53	5
27	WEST RAJASTHAN	-98	-91	182	38	-26	-100	-100	-94
28	HAR, CHD & DELHI	-2	-85	-12	29	-36	-100	-100	-62
29	HIMACHAL PRADESH	-32	-42	-6	19	21	-97	-32	139
30	GUJARAT REGION	52	-100	13179	1107	-100	-100	-100	-100
31	JAMMU AND KASHMIR	-97	-77	-35	-36	92	-63	-17	119
32	MADHYA MAHARASHTRA	213	-100	-100	300	-100	510	-100	-100
33	EAST UTTAR PRADESH	541	-100	-98	101	-60	-73	-100	-100
34	WEST UTTAR PRADESH	317	-70	-9	190	-89	-40	-100	-97
35	KERALA	-37	-66	-72	-95	-83	-96	-26	-88
36	ODISHA	456	-100	-100	-100	-99	-65	-61	-91

Page 1

RAINFALL NORMAL MAPS

SEASONAL & ANNUAL NORMAL RAINFALL (1951-2000) MAPS OF STATE, MET SUB DIVISION AND RIVER BASINS

C Q Search ☆ 自 ♥ ↓ 俞 ♥ (i) www.imd.gov.in/Welcome To IMD/Welcome.php INDIA METEOROLOGICAL DEPARTMENT Ministry of Earth Sciences Government of India IMD Home About Hon'ble Secretary DGM Observational IMD Others Contact Us Friday, 22 July 2016 f 1 हिन्दी / Hindi IMD Ministers MOES IMD Publications Network Services 10:14 PM IST Â NEW! Weather Information 80 mm, Anantapur 29.6/21.7/0.10 mm, Cuddappah 30.4/24.0/11.00 mm, Kakinada 32.0/26.9/15.10 mm, Kalingapatnam 31.8/27.7/NIL, Kurnool 29.5/23.7/2.70 mm, Machilipatnam 31.7/27.9/NIL, All India Weather Inference All India Weather Forecast All India Weather Warnings Weekly Weather Report **Products Quick View** WEEKLY MONSOON UPDATE DATED 21.07.2016 Marine Weather Bulletins **Cumulative Rainfall for the Season** Airport METARs Satellite Images **Radar Images** Warnings GKMS-News Quarterly Newsletter Heat Index January-March, 2016 Nowcast जल मौसम विज्ञान प्रभाग Credential of Aaromet Advisory HYDROMET DIVISION, NEW DELHI City Weather RAINFALL (mm.) FOR THE PERIOD Miscellaneous 01.06.2016 TO 22.07.3 Specialized Forecasts PARISTAN Press Release **Tourism Forecast** Highway Forecast Conference / Workshop / Seminar Mountain Weather Bulletin Tenders/ RFI/ EOI Shri Amarnathji Yatra 2016 **NWP Products RSMC Bulletin NAAS Bulletin** Earthquake Advertisements/ Notices Mata Vaishno Devi Yatra BAY OF BENGAL Other Related Links **Rainfall Information** ARARIAN SEA Monsoon IMS Cyclone Intra-IMD Portal INDIAN OCEAN **Departmental Sites** List..... -**MOES Sites** IMD SERVICES india.gov.in Visitors since 1st June 2016

Thank you

