CONTENTS

<table>
<thead>
<tr>
<th>Page No</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>III</td>
<td>Foreword</td>
</tr>
<tr>
<td>v</td>
<td>Preface</td>
</tr>
</tbody>
</table>

CHAPTER 1: OVERVIEW OF RENOVATION, MODERNISATION, UPRATING AND LIFE EXTENSION OF HYDROPOWER PLANTS

1.1 Introduction
1.2 Hydroelectric Potential
1.3 Shortages in Power Supply
1.4 Problems in Hydropower Plant Needing R&M
1.5 Uprating of Hydropower Plant
1.6 Genesis of R&M of Hydropower Plants
1.7 Financial Aspect and Policy of Funding of R&M Projects
1.8 Conclusion

CHAPTER 2: METHODOLOGY AND ENGINEERING OF RENOVATION, MODERNISATION, UPRATING AND LIFE EXTENSION OF HYDROPOWER PLANTS

2.1 Introduction
2.2 Strategy for Renovation and Modernisation
2.3 Scope of RMU&LE Works
2.4 Engineering Strategy of R&M
2.5 Benefits of Renovation, Modernisation, Uprating and Life Extension
2.6 Categorizing of Renovation Works
2.7 Classification of Hydro R&M Schemes
2.8 Criteria for RLA Studies
2.9 Renovation, Modernisation, Uprating and Life Extension Based on Residual Life Assessment Studies
2.10 Electrical Systems and Hydro Mechanical Equipment
2.11 Instrumentation Requirements
2.12 Strategy Aspects
2.13 Implementation of RMU&LE Programme
2.14 Renovation, Modernisation and Life Extension of Generator Transformers
2.15 Civil Works
2.16 Preparation of Hydro R&M Proposal
2.17 Methodology of Implementation of R&M Programme
2.18 Recommended Time Schedule for Implementation of R&M/LE Schemes
2.19 Conclusion

CHAPTER 3: HYDRO TURBINES AND AUXILIARIES

3.1 Hydro Turbines
3.2 Guidelines for Turbines with Arrangement for Silty Water Conditions
3.3 Residual Life Assessment 92
3.4 Up-Rating and Refurbishment Studies on Turbines 93
3.5 Residual Life Assessment of Hydro Turbine Shaft 94
3.6 Governor System 95
3.7 Application of CFD in Renovation, Modernisation and Uprating of Hydroturbines 97
3.8 Turbine Auxiliaries 100
3.9 Vibration Aspects 102
3.10 Case Studies 103
3.11 Conclusion 103

Case Studies
I. Uttarkashi HEP — Development of New Runner as per Actual Operating Head 117
II. 80 MW Francis Turbine — Tail Pool Studies to Contain Vibrations 119
III. 110 MW Francis Turbine — Output Limitations due to Tail Pool Constraints 120
IV. Restoration of Worn out Kaplan Runner of Pathri Power Station 121
V. Repair of Runner Chamber Liners at Chilla Power Station 123
VI. Failure of Top Cover Studs of Unit-IV of Chilla Power Station 130
VII. Renovation of Generating Units of Silt Prone Salal Hydropower Station 133
VIII. Renovation, Modernisation and Uprating Works at Ganguwal and Kotla Power Houses Located on Nangal Hydel Channel 140
IX. Sediment Problems at Hydroelectric Projects in the Himalayan Region 151
X. Restoration of Kaplan Turbine of Pathri Power Station 160
XI. Renovation of 25 MW Pelton Turbines and Shafts at Bhira (Maharashtra) 165
XII. Renovation and Modernization of Generating Units of Nagthari Powerhouse 174

CHAPTER 4: HYDRO GENERATORS AND AUXILIARIES
4.1 Introduction 189
4.2 Condition Monitoring and Diagnostic Techniques for Hydro Generators 205
4.3 Life Assessment and Life Extension Programmes 208
4.4 Guidelines for Assessment of Insulation Condition of HV Rotating Machine by Dielectric Diagnostic Tests 211
4.5 Refurbishment and Up-rating of Hydro Generators and Special Checks during R&M Execution 214
4.6 Information Required from Customer for Renovation, Modernisation, Up-rating and Life Extension 219
4.7 Special Checks during R&M Execution 220
4.8 List of Recommended Spares for R, M, U & LE of Hydro Generators 222
4.9 R&M Packages for Generators and Auxiliaries 224
4.10 Conclusion 225

Case Studies
I. Rewinding of Stators and Field Winding of Rotor Poles 231
II. Maithon HEP—Renovation, Modernisation and Upgrading of Generating Units 233
III. Kadana HEP—Thrust Bearing Temperature Problem 235
IV. Frequent Failure of Air and Oil Cooler Tubes 237
V. Drsplacement/Migration of Stator Core
VI. Koyna Stage - III—Stator Core Migration Problem
VII. Analysis of Failure of Stator Air Coolers and Bearing Oil Coolers of 110 MW Units of Srisailam Hydroelectric Project
VIII. Unprecedented Damages to Rotor of Unit III of Ramganga Power Station
IX. Dehar Power House (6 x 165 MW)—Stator Problem and Excessive Silt Damages to Under Water Parts
X. Khodri Power Station—Slipping of Stator Core Punchings - Innovative Techniques Developed for Site Repairs without Disturbing Generator Winding
XI. Problem of Stator Winding Temperature Rise in Unit ‘C’ of Dhakrani Power Station and Remedial Measures taken
XII R, M&U Experience of BBMB Power Plants

CHAPTER 5: POWER TRANSFORMER
5.1 Introduction
5.2 Condition Assessment
5.3 Condition Assessment Philosophy
5.4 Residual Life Assessment
5.5 Refurbishment
5.6 Upgrading Considerations
5.7 On-line Monitoring System
5.8 Conclusion

Case Studies
I. Upgradation of 50 MVA, 240 / 115.5 kV (Auto) 34.5 kV - 10 MVA, Loaded Tertiary Yynyno with OLTC for + 10% HV Variation of GE Canadian make to 75 MVA, 220/110 kV Auto Rating
II. Repairs of 227 MVA Canadian General Electric Transformer
III. Conversion of 16800 kVA General Electric USA make Transformer
IV. Condition Monitoring
V. High Temperature Spots on Generator Transformer Tank Body at Bhakra (Right Bank) Power House
VI. Re-commissioning of Russian make 135 MVA, 11/220 kV Power Transformer of Unit No. 4 and 5 at Bhakra (Left Bank) Power House
VII. Chamera HE Project – On Site Repair of 400 kV Transformer

CHAPTER 6: PLANT ELECTRICAL AND MECHANICAL SYSTEM
6.1 Introduction
6.2 Approach to Renovation and Modernization
6.3 Electrical Equipment and Accessories
6.4 Mechanical Equipment
6.5 Availability of New Technology Equipments
6.6 Conclusion

CHAPTER 7: CONTROL, METERING AND PROTECTION SYSTEMS
7.1 Introduction
7.2 R&M Consideration 411
7.3 Need for R&M of Control, Metering and Protection System 412
7.4 Advantages of Installation of On-Line Monitors 413
7.5 Scope of R&M for Control, Metering and Protection System 413
7.6 Implementation and Installation 415
7.7 Case Studies 415
7.8 Conclusion 415

Case Studies
I. RMU&LE of Maithon Hydroelectric Project of DVC– Upgradation of Control and Protection System 419
II. Road Map and Vision Statement of Protection System of BBMB 420

CHAPTER 8: CIVIL STRUCTURES
8.1 Introduction 435
8.2 Civil Structures of Hydropower Plants 435
8.3 Basic Strategies 436
8.4 Optimum Strategy 438
8.5 Conclusion 452

Case Studies
I. Maneri Dam – Treatment Downstream of the Roller Bucket 457
II. Comprehensive Safety Review of Rihand Dam and Power House-Conceptual Rehabilitation Plan of Penstock Gallery Frame 463
III Rehabilitation of Distressed Gates and Equipment of Rihand Dam 469

CHAPTER 9: GATES AND HYDRO-MECHANICAL EQUIPMENT
9.1 Introduction 477
9.2 General 477
9.3 Intent of RMU&LE Study 478
9.4 Equipment Details and O&M History 478
9.5 Scheduling of Studies and Tests 478
9.6 Scope for Study 479
9.7 Applicable Codes/Acts and Standards 482
9.8 Responsibilities of Project Authorities and Vendor 482
9.9 Recommendations and Deliverables 483
9.10 Conclusion 484

CHAPTER 10: QUALITY ASSURANCE PLAN DURING R&M PROGRAMME
10.1 Introduction 489
10.2 Typical Quality Assurance Plan for Major E&M Equipment 489
10.3 Conclusion 489

CHAPTER 11: FUNDING OPTIONS AND CONTRACTS
11.1 Introduction 515
11.2 Cost Competitiveness in R&M Activities 516
11.3 Financing Option 517
11.4 Conclusion 520

ABOUT THE AUTHORS 543