CONTENTS

Foreword (iii)

Preface (v)

Chapter 1: INTRODUCTION 1
 1.1 Background 1

Chapter 2: PRIMARY FACTORS FOR CONSIDERATION IN SEISMIC DESIGN 2
 2.1 Regional Geologic Setting 2
 2.2 Local Geologic Setting 3

Chapter 3: SELECTION OF EARTHQUAKE 4
 3.1 General 4
 3.1.1 Terminology/Procedures 4
 3.1.2 General Considerations 4

Chapter 4: DETERMINISTIC/PROBABILISTIC APPROACH 5
 4.1 Maximum-Design Earthquake (MDE) 5
 4.2 Operating-Basis Earthquake (OBE) 6
 4.3 Procedure for Selecting Earthquake 6
 4.3.1 Deterministic Approach 6
 4.3.2 Probabilistic Approach 6

Chapter 5: FACTORS INFLUENCING SEISMIC EVALUATION 7
 5.1 General 7
 5.2 Seismic Hazard Rating 7
 5.3 Risk Potential Rating 9
 5.4 Influence of Type of Dams 11
 5.4.1 Concrete Dams 11
 5.4.2 Embankment Dams 11
Chapter 6: SELECTION/DETERMINATION OF SEISMIC EVALUATION PARAMETERS

6.1 General 13
6.2 Deterministic Approach 13
 6.2.1 Peak Ground Motion Parameters 13
 6.2.2 Duration 14
 6.2.3 Response Spectra 14
 6.2.4 Acceleration Time Histories 15
 6.2.4.1 Superposition Methods 15
 6.2.4.2 Stochastic Processes 16
 6.2.4.3 Fault-Rupure Models 16
6.3 Probabilistic Approach 16

Chapter 7: GLOSSARY 18

REFERENCES 20

ANNEXURES 21

Annexure 1: List of Primary Factors to Consider in Seismic Design 21
Annexure 2: Steps for Earthquake Analysis and Design including 23
 Selection/Evaluation of Seismic Design Parameters
Annexure 2 (A): Flow Chart of Seismic Risk Study and Aseismic Design 25
Annexure 3: Some of the Widely used Attenuation Relations for Peak Ground 26
 Acceleration
Annexure 3 (A): Symbols and Definitions 31
Annexure 4: Duration versus Epicentral Distance and Magnitude for the 33
 Soil Site
Annexure 4 (A): Duration Versus Epicentral Distance and Magnitude for the 34
 Rock Site
Annexure 4 (B): Maximum Ground Acceleration and Durations of Strong 35
 Phase of Shaking